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Abstract. To understand the effect of code complexity on static anal-
ysis, thirty-five format string vulnerabilities were selected from the Na-
tional Vulnerability Database. We analyzed two sets of code for each
vulnerability. The first set of code contained the vulnerability, while the
second was a later version of the code in which the vulnerability had
been fixed. We examined the effect of both code complexity and the year
of discovery on the quality of static analysis results, including success-
ful detection and false positive rates. The tool detected 63% of the for-
mat string vulnerabilities, with detection rates decreasing with increasing
code complexity. When the tool failed to detect a bug, it was for one of
two reasons: the absence of security rules specifying the vulnerable func-
tion, or the presence of a bug in the static analysis tool. Complex code is
more likely to contain complicated code constructs and obscure format
string functions, resulting in lower detection rates. However, detection
rates did not change substantially from 2000 to 2006, showing that re-
ported format string vulnerabilities are not becoming more difficult to
find over time.
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1 Introduction

As an increasing number of vital operations are carried out by software applica-
tions, there is growing pressure on the software industry to provide more secure
programs. Because of the complexity of software and the rapidly changing na-
ture of vulnerabilities, it is often impractical to identify vulnerabilities through
developer code reviews alone. In addition to the time required, many developers
lack the expertise to consistently detect the numerous types of vulnerabilities.
To help address this problem, developers have been increasingly using static
analysis tools to identify security vulnerabilities.

Static analysis is the process of evaluating code without executing it. A wide
variety of static analysis tools for assessing code quality exist, but fewer tools
focused on detecting security bugs in source code exist. Security-focused tools
have matured in recent years. They can detect a variety of types of security
bugs and handle large-scale programs, reducing the amount of time that must
be spent in manual code inspection.
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As a result of this maturity and a growing concern over the security of soft-
ware, static analysis tools are increasingly used in the development of software.
Visual Studio 2005 includes the Prefast static analysis tool[2]. Static analysis tool
vendors like Coverity and Fortify perform free analyses of open source software
through their web sites[4, 5].

Static analysis tools detect security errors in code. However, they make two
types of mistakes in identifying errors: false negatives and false positives. False
negatives occur when a security bug exists in the program but the tool does not
report its presence. Such results are an obvious problem as the security bug is
not found and developers are left with a false sense of security.

When a tool reports the presence of a security bug when none exists in the
code, the result is called a false positive. False positives place an additional
burden on software developers by requiring that each result be examined to
determine whether it is an actual security bug. When the false positive rate is
too high, developers can find it difficult to find real security bugs that are hidden
in a mass of false positives.

Static analysis tools must make tradeoffs between precision and scalability.
High precision tools reduce the number of false positives and false negatives by
examining the context of each potential security bug using control flow analy-
sis and data flow analysis techniques. However, the number of potential paths
through a program increases exponentially with the number of branches, so very
high precision tools take too long to run on large programs. Data flow analysis
also becomes time consuming due to pointer aliasing or copying data through a
long set of function calls.

To provide scalability, static analysis tools make simplifying assumptions
and limit the depth of the analysis. However, these simplifying assumptions
can introduce inaccuracies into the analysis, causing the tool to produce false
negative or false positive results. One extreme example is lexical analysis which
does not consider context in any way, so tools using only this technique report
any potentially dangerous function call as a problem, no matter how securely it
is used.

We conducted an evaluation that measures detection and false positive rates
using a set of thirty-five format string vulnerabilities found in open source soft-
ware. These vulnerabilities were reported in the National Vulnerability Database
from 2000 through 2006. Each vulnerability was analyzed to determine the im-
pact of code complexity on the error rates of static analysis tools. Given the
tradeoffs between precision and scalability described above, we expected that
error rates would increase with code complexity.

Another goal of this study was to determine whether the probability of finding
security flaws with static analysis tools has changed over time. The number of
vulnerabilities reported increased rapidly from 2000 through 2006, which could
indicate that the number of security bugs remaining in code is decreasing as
reported vulnerabilities are fixed. It is reasonable to suppose that bugs discovered
earlier in this period are easier to find than bugs discovered later in this period.
If this is the case, then static analysis tools should have higher detection rates in
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the early years of this period than in the later years of this period. This would
result in static analysis detection rates decreasing with the year of discovery of
the vulnerabilities.

Several comparative evaluations of static analysis tools have been published[19,
10]. These studies used two techniques: microbenchmarks, which are small pro-
grams containing a single security flaw[10], or samples extracted from known
security flaws found in open source software[19]. While Kratkiewicz[10] cate-
gorized each test case according to local code complexity categories, such as
aliasing depth or type of control flow, the samples are too small to demonstrate
the complexity found in complete programs. Zitser[19] extracted small samples
containing the vulnerabilities from open source software because the tools eval-
uated in the study could not successfully analyze the complete source code. This
study differs from the ones mentioned above by analyzing complete open source
applications, allowing us to study static analysis in the conditions under which
it is normally used.

2 Format string vulnerabilities

Format string vulnerabilities are a dangerous class of security bug that can result
in the execution of arbitrary code supplied by the attacker. They can occur in any
language that supports printf()-style formatting functions. We chose to study
format string vulnerabilities because it is possible to quickly and conclusively
determine whether an application contains a format string vulnerabilty through
manual inspection of code.

While the first discovery of a format string vulnerability was reported in
September 1999[17], the potential danger of format string vulnerabilities was not
widely recognized until the discovery of the WU-FTP format string vulnerability
in June 2000[1]. Thirty-nine such flaws were reported in 2000. Format string
vulnerabilities arise when untrusted input is used as all or part of the format
string in formatted output functions like printf(), sprintf(), syslog(), or variants
thereof.

Format strings consist of a combination of ordinary characters and format
specifiers that begin with a percent sign. They are used as arguments to variadic
functions that take a number of arguments corresponding to the number of
format specifiers in the format string. Because the compiler cannot verify that the
correct number of arguments is used for variadic functions, it is the responsibility
of the programmer to ensure that the function cannot receive too few or too many
arguments.

If too many arguments are specified for the number of format specifiers, the
extra arguments are ignored. If too few arguments are specified, the result is
undefined, but in most cases, the function reads additional data from the stack
beyond its arguments. An attacker who controls the format string can alter the
number of format specifiers to ensure that there are too many format specifiers
for the number of arguments.
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While attackers can use format string bugs to view data from the stack or
to crash an application by causing it to follow an invalid pointer from the stack,
the primary danger of these vulnerabilities is that they can allow an attacker
to write directly to memory. The %n format specifier does not cause data to
be written to the output stream; instead, it takes an integer pointer argument
and sets the corresponding value to the number of characters formatted so far.
Attackers can exploit this specifier to write arbitrary values to arbitrary locations
in memory. Using multiple %n specifiers allows arbitrarily large amounts of data
to be written. This capability can be leveraged by an attacker to cause a process
to execute attacker controlled code.

The number of reported format string vulnerabilities has increased each year
since the first report in 1999, with the exception of 2003, as can be seen in
Figure 1. Note that the number of format string vulnerabilities in the graph is
multiplied by a factor of 10 to make changes in that number visible when com-
pared with the trend in the overall number of vulnerabilities. In 2003, both the
total number of vulnerabilities and the number of format string vulnerabilities
reported decreased. However, that decrease is an artifact of a large backlog of
unprocessed vulnerabilities that year[3].

The upward trend in the number of format string vulnerabilities resumed
after 2003, and the upward trend in the total number of vulnerabilities resumed
after 2004. The rate of increase in the total number of vulnerabilities since 2004
has been much faster than the rate of increase of format string vulnerabilities.
This difference is the result of an increasing number of vulnerabilities in web
applications, such as cross-site scripting and SQL injection.

Fig. 1. Format String Vulnerabilities by Year

3 Test cases

Thirty-five format string vulnerabilities in open source Linux software written in
C or C++ were selected randomly from the National Vulnerability Database[13]
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to evaluate the effectiveness of static analysis. Five vulnerabilities were selected
for each year from 2000 through 2006. In order for a test case to be evaluated,
source code for both the vulnerable and fixed versions of the software must
be available. Furthermore, the software must be able to be compiled with the
GNU C compiler on Red Hat Enterprise Linux 4, and it must be possible to run
Fortify’s Source Code Analyzer on the software. Test cases that did not meet
these criteria were replaced with another test case selected randomly. Any piece
of software that was selected more than once, even for a different format string
vulnerability, was also replaced with another randomly chosen test case.

For each vulnerability, both the version of the software with the reported vul-
nerability and a later version of the software where the vulnerability was reported
to be fixed were evaluated. It was not always possible to find the vulnerable ver-
sion of the code. Some open source projects remove vulnerable versions of the
software from their site once the vulnerability has been fixed to prevent users
from downloading dangerous software. Older versions of software are also often
removed from sites, so that many of the initially selected samples from 2000
and 2001 had to be rejected because the source code was not available. Source
code for some vulnerabilities was retrieved from the Internet Archive[8] when
the current project site did not have the source code.

Software was compiled using either gcc 3.4.6 or gcc 3.2.3 on Red Hat Enter-
prise Linux 4. Some software had to be patched in order to compile with these
versions of gcc. Most of the patches were small, fixing minor differences in in-
clude files between different versions of Linux or fixing minor differences in gcc,
such as older versions of gcc permitting the presence of an empty case at the end
of a switch statement[6]. No patch altered lines of code where the format string
vulnerabilities existed or where they were fixed. If a software package compiled
successfully, there were generally no problems performing a static analysis of the
software. Only one test case was eliminated due to the inability to perform a
static analysis on it.

Several software packages had multiple entries in the NVD for format string
vulnerabilities, most notably Ethereal and Hylafax, with five CVE entries each.
Only the first sample selected for such a package was used.

4 Test procedures

The static analysis tool used was Fortify Software’s Source Code Analyzer 4.5.0.
Older open source static analysis tools, such as flawfinder, ITS4, RATS, were
not selected because they rely on simple lexical analysis techniques that produce
many false positives[19]. Modern tools, including Fortify, analyze the semantics
as well as the syntax of the source code. While numerous modern tools exist,
the freely available tools were not suitable for this study, as they were not able
to analyze larger pieces of software, did not support common variants of C, or
required extensive configuration specific to each piece of software[7].

The analysis of vulnerabilities included both a flawed and a patched version
of software. If the flaw was identified in the vulnerable version of software, the
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result was recorded as a successful detection. If the flaw was not found, a false
negative was recorded. In the analysis of the patched software, detection of
the vulnerability constituted a false positive. If no vulnerability was found, the
analysis was marked as correct. We also measured the discrimination of the tool,
a count of how often the analyzer did not report a vulnerability in the fixed test
case when it also did not report the vulnerability in the vulnerable test case[12].

We began each analysis by finding the vulnerability in the National Vulnera-
bility Database[13] and identifying the version of the software that contained the
vulnerability and the closest accessible version of the software that had fixed the
vulnerability. Some NVD entries provided the complete information necessary
to isolate the lines of code containing the vulnerability. However, many other
entries only provided the name of the problematic function.

In these instances the source code was examined manually to determine if
the vulnerability could be clearly identified. Vulnerable and patched versions of
the program file or function were compared to isolate the location of the security
bug. In a few cases, there was insufficient information to definitively identify the
flaw, so we excluded the vulnerability and selected another to replace it.

Once a vulnerability was isolated, we examined the fixed version of the code
to isolate the changes made to fix the vulnerability. No large code changes were
observed between the vulnerable and patched versions in most cases, making
it trivial to determine if the flawed code snippet had been fixed. In a few of
the cases functions were shifted changing line numbers significantly, but the file
names and function names remained constant making it easy to confirm the fix
in the patched version.

Both versions of the software were compiled using the gcc compiler. Fortify
Source Code Analyzer (SCA) relies on the compiler to identify the source code
for analysis. Once the source code was compiled, SCA was run with the default
rule set. While SCA can be customized to maximize its effectiveness on each
particular program, we wanted to evaluate its capabilities in the same way for
every program.

To score a successful detection, SCA had to either detect a format string
vulnerability in the particular format string function described in the NVD entry
or it had to detect a vulnerability in the chain of function calls to led to that
format string being called. A false positive result was recorded if SCA continued
to detect the same format string vulnerability in the fixed version of the source
code. Most format string vulnerabilities are fixed by replacing the dangerous call
with a call using a fixed format string. However, some vulnerabilities were fixed
by validating the user-controlled format string before the call, and Fortify was
unable to detect such fixes.

5 Results

Two complexity measures were computed for each application. The first metric
was Source Lines of Code (SLOC), which is the number of lines of code exclud-
ing comments or blank lines. We measured SLOC using SLOCCount[18]. The
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second metric was McCabe’s cyclomatic complexity, the classical graph theory
cyclomatic number[11]. The tool used to measure cyclomatic complexity was
PMCCABE[14]. We divided the applications into five classes by size and com-
plexity values as described in Figures 2 and 3.

Class Lines of Code Samples Detections

Very Small < 5000 9 7

Small 5000-25000 9 7

Medium 25,000-50,000 7 4

Large 50,000-100,000 6 2

Very Large > 100, 000 4 0

Fig. 2. Size Class Table

Class Complexity Samples Detections

Very Small < 1000 10 7

Small 1000-5000 10 8

Medium 5000-10,000 5 3

Large 10,000-25,000 6 2

Very Large > 25, 000 4 0

Fig. 3. Complexity Class Table

Of the 35 vulnerabilities examined, 22 (63%) were detected by the static
analysis tool. Figure 3 shows that detection rates of format string vulnerabilities
decreased with increasing code complexity. We found that the detection rates
for different classes came from different statistical distributions with a p-value of
0.02. While there was no substantial difference in the quality of static analysis
results between the very small and small categories, the quality of results declined
noticeably as complexity increased beyond the small category, declining to zero
for the very large category, which included software larger than 100,000 lines of
code.

We found two causes of failed detections of format string vulnerabilities. The
first cause was the use of a format string function that was not in the rule base
of Source Code Analyzer. Four of the thirteen (31%) failed detections resulted
from this problem. There are hundreds of format string functions, provided by a
variety of libraries coming from different sources. One of the format string func-
tions that was not detected was the ap vsnprintf() function from the Apache
Portable Runtime. It is impossible for a tool to track all potential format string
functions. However, these mistakes could be fixed by the developer adding rules
to detect the format string functions that are used in the developer’s application.
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The second cause was a bug in how Source Code Analyzer counts arguments
that are passed into a function using the C language’s varargs mechanism. In
these cases, the application contains a variadic function that wraps the call to the
dangerous format string function. Nine of the thirteen (69%) failed detections
resulted from this cause. These mistakes could also be fixed one by one through
adding appropriate rules to detect the dangerous functions, but it would also
be possible to fix the entire class of flaws by modifying the static analysis tool
to correctly analyze data passed through the varargs mechanism. This bug has
been reported to Fortify.

Neither of these causes has a necessary relationship to code size or complexity.
However, larger projects are more likely to use their own specialized functions for
input and output instead of directly using functions from the standard library.
This means that larger projects are more likely to call format string functions
through wrappers. Large software projects also tend to include a larger number of
developers, which typically provides a wide range of knowledge. This knowledge
can lead to use of a broader subset of a language’s features than would be used
in smaller projects, resulting in heavier usage of the varargs feature.

Fig. 4. Detections by Complexity Class

Divided into five classes, there was no significant difference (p < .01) between
the results for lines of code and those for cyclomatic complexity. Other studies,
such as [9], have found a strong correlation between these two complexity metrics.

Discrimination[12], a measure of how often an analyzer passes the fixed test
case when it also passes the matching vulnerable test case, is shown in figure 5.
This metric provides an important check on the results of a static analysis tool,
as a tool can achieve a high detection rate through overeager reporting of bugs,
which also produces many false positive results. Discrimination ensures that the
tool accurately detected both the vulnerability and its fix. The discrimination
graph closely resembles the complexity graph above, as Source Code Analyzer
returned only two false positives during the analysis of the 35 fixed samples.



Measuring the Effect of Code Complexity on Static Analysis Results 9

Fig. 5. Discrimination by Complexity Class

We found that the discrimination values for different complexity bins came from
different distributions with a p-value of 0.02.

Developers remove security bugs from software as they are discovered. It
is likely that vulnerabilities that are easier to find by static analysis tools are
discovered earlier than vulnerabilities that such tools cannot detect, for a couple
of reasons. First, the effort of developers to find vulnerabilities is hindered by
some of the same factors that cause problems for static analysis tools, such
as code complexity and the use of obscure language features. Second, static
analysis tools have become much more widely used over the years examined
in this study. As a result of the remaining vulnerabilities being more difficult
to discover, one might expect static analysis detection rates to decrease with
the year that a vulnerability is discovered. However, we found no correlation
between static analysis detection rates and the year in which the vulnerability
was detected as can be seen in Figure 6.

Fig. 6. Vulnerabilities Detected by Year
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6 Future Work

We have conducted an experiment on the effect of code complexity on static
analysis results. However, there is much yet to be done. In order to determine
how far these results can be generalized, we need to measure the effect of code
complexity using different types of vulnerabilities and software written in other
languages. Analyzing software written in a language such as Java would also
enable us to use open source static analysis tools that are not available for C.

To better study the effects of time on the quality of static analysis results,
we could study a small number of projects over a number of revisions, measuring
the detection rates of vulnerabilities for each revision. We would also like to use
more sophisticated statistical analyses for such work in order to disentangle the
effects of code complexity from time.

Another area of future interest is the effect of adding customized rules. Is
there a set of rules that could be learned from the false negative results in a
subset of applications that would substantially improve the detection rates for
a particular vulnerability class in other applications? This set of rules will be
specific to the vulnerabilities studied and the static analysis tools used.

7 Conclusion

Thirty-five format string vulnerabilities selected from 2000 through 2006 were
analyzed to determine the limitations of the usefulness of static analysis tools.
We examined the effect of both code complexity and the year of discovery on
the quality of static analysis results. Our results show that successful detection
rates of format bugs decreased as code complexity increased. Code complexity
was measured using both lines of code and cyclomatic complexity.

Static analysis tools are an attractive alternative to formally proving the
correctness of a program since it is easier to specify how to detect specific security
bugs than it is to generate specifications for the entire program. However, it is
still a difficult problem to specify how to detect security bugs. While the concept
of format string vulnerabilities is simple, there are hundreds of format string
functions, and developers on large projects frequently write their own wrappers
for these functions in large programs. A static analysis tool needs to know about
all of these functions to detect all format string vulnerabilities.

The other problem is that static analysis tools are large, complex programs
that have bugs. While the bug mentioned in this paper will be fixed, there are
almost certainly other bugs in Source Code Analyzer. Other static analysis tools
will have their own idiosyncratic bugs. Complex programs are more likely to
contain unusual code constructs that will trigger new bugs in static analysis
tools.

However, there does not appear to be a trend showing that static analysis
tools are becoming less useful as time progresses. Detection rates did not change
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substantially from 2000 to 2006, showing that format string vulnerabilities are
not becoming more difficult for the tool to find over time. Programmers appear
to be making the same types of mistakes when using format string functions, as
the number of bugs continues to increase and the detection rate of static analysis
tools is not decreasing.
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